министерство просвещения российской федерации

Министерство образования и молодежной политики Свердловской области

Департамент образования Администрации г. Екатеринбурга МАОУ Гимназия № 5

УТВЕРЖДЕНО
Директором МАОУ гимназии № 5
А.Ф. Сорокина
Приказ 27.08.2025 № 1/8
МАО
ГИМНОЗИЯ
№ 5

РАБОЧАЯ ПРОГРАММА

Курс внеурочной деятельности

«Решение задач повышенной сложности»

для обучающихся 11 классов

Екатеринбург

Элективный курс по физике 11-класс.

Решение задач повышенной сложности

Пояснительная записка

Данная программа отражает содержание курса физики для общеобразовательных учреждений 10-11 классов (программа В.А. Касьянова). Она учитывает цели обучения физике учащихся средней школы и соответствует государственному стандарту физического образования. Материал излагается на теоретической и практической основе, включающей вопросы механики Ньютона, термодинамики, молекулярно-кинетической теории, электродинамики. Курс «Физики в задачах» общим объёмом (1 час в неделю) рассчитан на изучение в течение года.

Данная программа предназначена для реализации следующих целей:

- подготовка выпускников общеобразовательной школы как к поступлению в высшие технические учебные заведения, так и к получению профессии технического профиля;
- более глубокое обучение основ физики через решение задач технического содержания в соответствии с возрастающими требованиями современного уровня технологизации процессов во всех областях жизнедеятельности человека;
- формирование метода научного познания явлений природы как базы для интеграции знаний и развитие мышления учащихся.
- Необходимость создания данной программы тем, что требования к подготовке по физике выпускников основной школы возросли. Курс предполагает проведение занятий по лекционно-семинарской системе с использованием элементов диалога, задач-демонстраций, предоставляя тем самым инструментарий для последующего самостоятельного решения качественных, количественных и графических задач индивидуально или в группах.

Для реализации курса требуются следующие средства обучения: стандартный набор физического оборудования для проведения демонстрационного эксперимента, входящего в оснащение кабинета физики, сборники задач, а также дидактический материал.

Достижение результатов обучения по программе данного курса отслеживается с помощью контрольных работ в конце каждого блока учебного материала. Предполагается, что такие работы будут включать видоизменённые задачи олимпиад различных лет и носить уровневый характер, отражающий умения ученика решать типовые задачи повышенной сложности, эвристические задачи. Контрольные работы по разделу «Механика» содержат экспериментальные задачи, которые позволят проверить уровень владения теоретическим материалом, умение работать с физическим оборудованием.

Обучающие самостоятельные работы включают обработку экспериментальных данных, полученных в ходе выполнения демонстрационного эксперимента. В результате изучения программы элективного курса «Физика в задачах» учащиеся приобретут знания в области физики механических, тепловых и электростатических процессов и явлений, отображённых в базовом курсе физики средней (полной) школы;

научатся решать нестандартные задачи, используя стандартные алгоритмы и набор приёмов, необходимых в математике; приобретут навык предварительного решения количественных задач на качественном уровне, графического решения задач, применения начал анализа для решения задач с параметрами.

В ходе изучения данного элективного курса учащихся приобретут навыки самостоятельной работы, работы со справочной литературой; овладеют умениями планирования учебных действий на основе выдвигаемых гипотез и обоснования полученных результатов.

Альтернативной формой контроля усвоения знаний и приобретённых умений могут служить следующие виды работ:

- изготовление прибора или установки для демонстрации явлений или процесса;
- создание компьютерной программы, иллюстрирующей явление, процесс;
- создание презентации, отражающей последовательность действий при исследовании влияния изменения параметра на состояние системы в целом.

Организация учебных занятий позволит учащимся овладеть личностным опытом самореализации, научиться уважать мнение оппонента.

Материал, отобранный для данного элективного курса, представляет собой подборку качественных и расчётных задач, позволяющих сделать изучение теоретического материала более осознанным и глубже понять законы, объясняющие природные явления и технические процессы.

Так, *модуль* «*Кинематика*» предполагает рассмотрение ряда понятий: тангенциальное, нормальное и полное ускорения, угловая скорость и угловое ускорение, для закрепления которых предусматривается решение задач.

Модуль «Динамика» не использует дополнительного теоретического материала, но на основе базовой теории даёт возможность подробнее рассмотреть традиционно сложные для учащихся задачи на движение систем связанных тел по горизонтали и наклонной плоскости. Кроме того, здесь подробно рассматривается динамика тел, движущихся по криволинейным траекториям.

Модуль «Законы сохранения» предусматривает изучение физических принципов реактивного движения и вывода уравнения Мещерского. В этой же части предполагается решение комбинированных задач, охватывающих материал всего раздела «Механика», что соответствует уровню С на ЕГЭ.

Модуль «Основы МКТ вещества. Реальный газ. Кристаллы» позволяет изложить ряд вопросов, традиционно рассматриваемых в факультативном курсе: реальный газ, сжижение газов, облака; кристаллы, процессы их роста, дефекты. Задачи, решаемые в этой части спецкурса, соответствует уровням В и С по материалам ЕГЭ.

В *модуле «Электростатические явления»* рассматриваются плотность электрического заряда, решаются задачи на расчёт соединения конденсаторов. В этой же части программы могут быть рассмотрены вопросы электризации тел и поведение диэлектриков.

Программа курса

11 класс

(35ч, 1ч в неделю)

1. Кинематика (5 ч)

Цель изучения физики. Связь между физическими величинами. Практические задачи как основной критерий теории. Материальная точка и способы описания её движения в различных системах отсчёта. Уравнения движения материальной точки на плоскости. Графическое представление неравномерного движения с помощью различных кинематических характеристик. Вращательное движение твёрдого тела и кинематические характеристики.

2. Основы динамики. Применение законов динамики к решению задач (6 ч)

Прямолинейное движение по наклонной плоскости для одного тела и системы связанных тел, движение связанных тел по горизонтали и в вертикальной плоскости. Вращательное движение в горизонтальной и вертикальной плоскостях. Движение в поле тяготения (вблизи поверхности Земли, для других небесных тел и их систем).

Законы сохранения (6 ч)

Закон сохранения импульса. Реактивное движение. Уравнение Мещерского. Закон сохранения и превращения энергии в механике и его применение к абсолютно упругим и абсолютно неупругим взаимодействиям.

3. Статика (3 ч)

Условия равновесия твёрдого тела. Виды равновесия. Практикум по теме «Законы статики»

Основы МКТ и газовые законы (6 ч)

Температура. Способы измерения температуры. Различные температурные шкалы. Уравнение состояния идеального газа. Газовые законы. Комбинированные задачи на газовые законы. Внутренняя энергия идеального газа. Основы МКТ.

4. Основы термодинамики (5 ч)

Работа в термодинамики. Теплоёмкость газа при постоянном давлении и объёме. Принцип действия тепловых двигателей. КПД тепловых двигателей. Цикл Карно. Влажность. Точка росы.

7. Электростатические явления (4ч)

Электрический заряд, закон сохранения электрического заряда. Напряжённость заряженной сферы, плоскости. Диаграммы напряженности различных заряженных тел и их систем. Соединение конденсаторов. Расчёт различных соединений конденсаторов.

; научатся решать нестандартные задачи, используя стандартные алгоритмы и набор приёмов, необходимых в математике; приобретут навык предварительного решения количественных задач на качественном уровне, графического решения задач, применения начал анализа для решения задач с параметрами.

В ходе изучения данного элективного курса учащихся приобретут навыки самостоятельной работы, работы со справочной литературой; овладеют умениями планирования учебных действий на основе выдвигаемых гипотез и обоснования полученных результатов.

Альтернативной формой контроля усвоения знаний и приобретённых умений могут служить следующие виды работ:

- изготовление прибора или установки для демонстрации явлений или процесса;
- создание компьютерной программы, иллюстрирующей явление, процесс;
- создание презентации, отражающей последовательность действий при исследовании влияния изменения параметра на состояние системы в целом.

Организация учебных занятий позволит учащимся овладеть личностным опытом самореализации, научиться уважать мнение оппонента.

Материал, отобранный для данного элективного курса, представляет собой подборку качественных и расчётных задач, позволяющих сделать изучение теоретического материала более осознанным и глубже понять законы, объясняющие природные явления и технические процессы.

Так, *модуль* «*Кинематика*» предполагает рассмотрение ряда понятий: тангенциальное, нормальное и полное ускорения, угловая скорость и угловое ускорение, для закрепления которых предусматривается решение задач.

Модуль «Динамика» не использует дополнительного теоретического материала, но на основе базовой теории даёт возможность подробнее рассмотреть традиционно сложные для учащихся задачи на движение систем связанных тел по горизонтали и наклонной плоскости. Кроме того, здесь подробно рассматривается динамика тел, движущихся по криволинейным траекториям.

Модуль «Законы сохранения» предусматривает изучение физических принципов реактивного движения и вывода уравнения Мещерского. В этой же части предполагается решение комбинированных задач, охватывающих материал всего раздела «Механика», что соответствует уровню С на ЕГЭ.

Модуль «Основы МКТ вещества. Реальный газ. Кристаллы» позволяет изложить ряд вопросов, традиционно рассматриваемых в факультативном курсе: реальный газ, сжижение газов, облака; кристаллы, процессы их роста, дефекты. Задачи, решаемые в этой части спецкурса, соответствует уровням В и С по материалам ЕГЭ.

В модуле «Электростатические явления» рассматриваются плотность электрического заряда, решаются задачи на расчёт соединения конденсаторов. В этой же части программы могут быть рассмотрены вопросы электризации тел и поведение диэлектриков.

дата	занятие	кол. часов	Блок, тема		
		5ч	4 10		
09	1	1	1. Кинематика		
09	2	1	Вводное занятие		
18.09	3	1	Уравнение траектории тела на плоскости Равнопеременное движение и его графическое		
16.09	3	1	представление		
25.09	4	1	Вращательное движение твёрдого тела. Тангенциальное,		
25.07	-	1	нормальное и полное ускорения. Угловая скорость,		
			ускорение.		
02.10	5	1	Контрольная работа		
02.11		6ч	2. Основы динамики. Применение законов		
		0.1	Ньютона		
09.10-16.10	6,7	2	Динамика прямолинейного движения (наклонная		
	,		плоскость, связанные тела)		
23.10	8	1	Динамика вращательного движения		
06.11	9	1	Движение в поле силы тяжести		
13.11	10	1	Движение планет и искусственных спутников Земли		
20.11	11	1	Контрольная работа		
		6ч	3. Законы сохранения		
27.11	12	1	Реактивное движение. Уравнение Мещерского		
04.12-11.12	13,14	2	Закон сохранения и превращения энергии в механике		
18.12-25.12	15,16	2	Применение законов сохранения к абсолютно упругим и		
			абсолютно неупругим столкновениям		
15.01	17	1	Контрольная работа		
		3ч	4.Статика		
22.01	18	1	Условия равновесия твёрдого тела.		
29.01	19	1	Виды равновесия		
05.02	20	1	Контрольная работа		
		6ч	5.Основы МКТ и газовые законы		
12.02	21	1	Температура. Способы измерения температуры.		
10.00			Различные температурные шкалы.		
19.02	22	11	Уравнение состояния идеального газа.		
26.02	23	1	Газовые законы.		
05.03	24	1	Комбинированные задачи на газовые законы.		
12.03	25	1	Внутренняя энергия идеального газа. Основы МКТ.		
19.03	26	1	Контрольная работа		
02.04	27	<u>5ч</u>	6.Основы термодинамики		
02.04	27	1 1	Работа в термодинамики		
09.04	28	1 1	Теплоёмкость газа при постоянном давлении и объёме.		
16.04	29	1	Принцип действия тепловых двигателей. КПД тепловых		
23.04	30	1	двигателей. Цикл Карно Влажность. Точка росы.		
30.04	31	1	Контрольная работа		
30.04	31	4ч	5. Электростатические явления		
07.05	32	1	Электрический заряд, закон сохранения электрического		
07.03	32	1	заряда.		
14.05	33	1	Напряжённость заряженной сферы, плоскости.		
17.03		1	Диаграммы напряженности различных заряженных тел и		
			их систем.		
	2.4	4			
21.05	34	1	Расчёт различных соединений конденсаторов.		